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 TECHNICAL COMMUNICATIONS

 The Impacts of Hurricane Andrew on Mangrove
 Coasts in Southern Florida: A Review

 John W. Swiadek

 Department of Ocean Engineering
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 ABSTRACTI

 SWIADEK, J.W., 1997. The impacts of Hurricane Andrew on mangrove coasts in southern Florida: A Review. Journal
 of Coastal Research, 13(1), 242-245. Fort Lauderdale (Florida), ISSN 0749-0208.

 Coastal mangroves in Southern Florida were seriously damaged when Hurricane Andrew made landfall on August
 24, 1992. Damage associated with Hurricane Andrew was primarily related to high wind velocity and surge. Shoreline
 erosion, which was generally less than 15 m, was caused by wave action and storm surge. This erosion may continue
 or expand since waves and currents can reprofile unprotected subsurface and intertidal sediments uprooted by man-
 grove trees.

 ADDITIONAL INDEX WORDS: Everglades National Park, Biscayne National Park, Everglades geology, mangroves,
 coastal erosion, storm surge.

 INTRODUCTION

 Mangroves cover about 274,857 hectares around the south-
 ern coastal fringe of Florida, including Biscayne Bay, the
 Florida west coast, Whitewater Bay and Florida Bay (LUGO
 and SNEDAKER, 1974). They occur along the fringes of pro-
 tected shorelines and islands, along river and creek drain-
 ages, around small low islands and low-lying promontories,
 and in inland areas along drainage depressions channeling
 terrestrial runoff toward the coast (LUGO and SNEDAKER,
 1974).

 There are three species of mangrove trees in this region:
 red mangrove (Rhizophora mangle L.), black mangrove (Avi-
 cennia germinans L.), and white mangrove (Laguncularia ra-
 cemosa Gaertn.f.). Mangrove forests combine all four species
 and occur as mono-specific stands dominated by a single spe-
 cies (SFWMD, 1992). While the red and black mangroves are
 not rare enough to be classified as endangered species, they
 are listed as species of special concern by the state of Florida.
 The distribution of mixed and mono-specific forests is influ-
 enced by topographic and salinity gradients, lightning from
 thunderstorms, lumbering, and hurricanes. Mangrove forests
 have a limited and poorly developed understory because of
 their dense canopies (SFWMD, 1992). These understories in-
 clude a variety of holophytic and freshwater species and the
 exact composition depends on local conditions (BURZYCKI,
 personal communication).

 Coastal mangrove forests protect hinterlands by absorbing
 storm waves (PETHICK, 1991). Coastal mangroves trap sedi-
 ments and control erosion. When waves pass through the
 mangrove forest, their energy is dissipated inside the forest
 by the root system and trunks. The obstruction provided by
 the prop roots and trunks of the mangrove trees reduces wave
 velocity so that deposition of sediments rather than erosion
 tends to occur (BURZYCKI and DRUM, 1992). The coastal man-
 grove forest thus serves as a medium to focus sediment de-
 position on coasts which have low wave energy (BURZYCKI,
 personal communication).

 METEOROLOGY OF HURRICANE ANDREW

 The eye of Hurricane Andrew made landfall on 24 August
 at 0452 hours and about twenty-five miles south of downtown
 Miami near Florida City. An Air Force hurricane reconnais-
 sance plane recorded sustained wind speeds of 300 km/hr and
 wind gusts of 315 km/hr at 3,048 meters elevation when An-
 drew approached the coast. Observations made by structural
 engineers and wind experts suggest that gusts may have ex-
 ceeded 321 km/hr at ground level (SCHMIDT et al., 1993). The
 highest confirmed wind speeds on land were 209 km/hr with
 gusts of 285 km/hr (POWELL and HOUSTON, 1993). Hurricane
 Andrew proceeded on a westerly course with a ground speed
 of about 25 km/hr, passing over Marco Island at 0730 hours
 before heading into the Gulf of Mexico and eventually im-
 pacting the Louisiana shore (SCHMIDT et al., 1993) (see Fig-
 ure 3).
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 Figure 1. Schematic of Everglades National Park; modified from National Park Service map.

 The behavior of the storm was similar to a 40 km wide

 tornado (OGDEN, 1992). FUJITA (1992) reported that vortices
 traveled in boomerang-shaped paths with winds of up to 321
 km/hr (cited in SCHMIDT et al., 1993). Maximum storm surges
 occurred around the eye wall and were approximately 6 m
 (PILKEY et al., 1993). The total rainfall ranged from 101-152
 mm depending on the location relative to the storm path.

 COASTAL MANGROVE DAMAGE DUE TO
 HURRICANE ANDREW

 Damage to mangrove forests was primarily wind induced
 (Plate 1). Hurricane waves produced comparatively little
 damage due to the low storm surge which was graphically
 restricted. The following factors minimized the impacts of the
 storm surge and wave action: (1) The coast is fronted by a
 reef flat. The undeveloped keys of Biscayne National Park
 acted as an offshore breakwater, substantially dampening
 the incoming wave energy (Figure 2). (2) On a larger scale,
 the Bahamas Island and carbonate shoals limited the fetch

 of hurricane-force winds. (3) Southeastern Florida has a very
 narrow continental shelf that mitigated the storm-surge
 (PILKEY et al., 1993).

 Shore Erosion

 Storm surge and wave action caused less than 15 m of
 shoreline erosion (WANLESS, 1994). Assessment of shore ero-
 sion immediately after the hurricane is based on sedimentary
 deposits that were observed in late August through mid-Sep-
 tember 1992. These deposits indicate the types of materials
 that were transported by Hurricane Andrew.

 West Coast

 On the broad intertidal to shallow subtidal banks seaward

 of Harney River, Broad River and Lostman's River, there was
 a widespread layer of mud and muddy sand up to 50 cm thick.
 In protected offshore depressions and interior bays, a grayish
 mud layer of approximately 20-50 cm thick was observed.
 This grey mud layer is indicative of quartz and calcium car-
 bonate source material. No muddy storm deposits were ob-
 served on the seaward deepening offshore slope. Ebb deltas
 formed when surge waters receded from the mangrove
 swamp. These deltas formed along the west coast and along
 tidal channels as well as on Cape Sable (DAVIS et al., 1992).

 East Coast

 In depressions along the western margin of Biscayne Bay,
 a tan to brownish sedimentary layer (up to 50 cm thick) was
 observed. In the mud banks and depressions on the east side
 of Biscayne Bay, a grayish mud layer of up to 50 cm thick
 was found. An ebb sand delta was reported about 3 km from
 the north end of Elliot Key on the eastern shore (DAVIs et al.,
 1992).
 There has been no subsequent subtidal erosion or storm

 deposition on the seaward side of the Safety Valve from Sol-
 dier Key southward as evidenced by clear waters in the area.
 The storm surge experienced on the Atlantic coast from Sol-
 dier Key to Elliot Key stripped away shore vegetation but had
 no effect on the limestone surface. The northern Safety Valve
 seaward coastal waters were highly turbid and of a whitish
 hue indicating erosion of coasts and banks as well as rework-
 ing of storm mud layers (DAVIs et al., 1992).

 Journal of Coastal Research, Vol. 13, No. 1, 1997
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 Figure 2. Schematic of Biscayne National Park; modified from National
 Park Service map.

 In general, there was little erosion of peat and marl coast-
 lines. High winds and storm surge uprooted trees creating
 approximately 1-2 m of local relief on forest floors in the
 areas that were hardest hit. It is anticipated that this coastal
 area will erode in response to wave and current exposure.
 This erosion may bring organic materials (such as dead twigs,
 decomposing leaves and tree stems) into the coastal bays
 (SMITH et al., 1994).

 The rough ground surface caused by the widespread tree
 uprooting, flattening of the mangrove forest now contains
 stagnant ponds and supratidal patches. This may be a pre-
 cursor to being consumed by bay expansion as the sea level
 continues to rise (WANLESS, 1994).

 MANGROVE RECOVERY

 Impacts of Hurricane Andrew combined with human de-
 velopment may upset natural successional processes that will
 destabilize ecosystems in the region (TILMANT et al., 1994).
 Recovery of Florida's mangroves is uncertain because some
 mangrove stands do not always return to their former state.

 Prior to the 1935 hurricane, for example, a forest of black
 mangroves existed near Flamingo, Florida, but after the
 storm red mangroves became established and increased
 abundantly at that site. In 1960, Hurricane Donna destroyed
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 Figure 3. Path of Hurricane Andrew (SCHMIDT et al., 1993).

 mangrove forests along the northwest coast of Cape Sable,
 and the mangroves still have not recolonized large expanses
 of barren mudflats (SMITH et al., 1994; CRAIGHEAD, 1971).

 Several factors influence whether a mangrove forest will
 recover after a storm. For example, hurricane destroyed can-
 opies show effects similar to those caused by lightning-in-
 duced canopy gaps. In comparison to the surrounding canopy,
 a gap has lower humidity and higher soil temperature (det-
 rimental to mangrove seedlings) and increased light (benefi-
 cial to mangrove seedlings). In devastated mangrove areas,
 there are no longer living roots to aerate the soil and conse-
 quently there is a decrease in redox reaction. Anaerobic de-
 composition may increase the reduction of the surface level
 of peat soils (SMITH et al., 1994).

 Preliminary measurements of redoxymorphic processes in-
 dicate an increase in reduction as well as higher sulfide lev-
 els. Mangrove recolonization may be inhibited by sea-level
 rise as marine processes modify portions of the drowned man-
 grove substrate (WANLESS, 1994). It is still too early to as-
 certain the level of mangrove forest recovery from Hurricane
 Andrew (SMITH et al., 1994).

 CONCLUSION

 In general, mangrove trees of less than 5 cm DBH (Diam-
 eter at Breast Height) had less than 10% mortality. Black
 mangroves had significantly lower mortality than red or
 white mangroves. Many trees which initially appeared to sur-
 vive the hurricane (as evidenced by green leaves after the
 storm) eventually succumbed (SMITH et al., 1994). Perhaps
 lightning helps to insure survival of the mangroves damaged
 by hurricanes because saplings have greater resiliency to
 hurricanes. As the sea level continues to rise, the devastated
 forest areas that do not recolonize could evolve into bays that
 deepen and expand (WANLESS, 1994).
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 Plate 1. Hurricane damage to mangrove at Matheson Hammock. (A) Top left. Sprouting saplings and regrowth of upper tree foliage. (B) Top right.
 Widespread debris camouflages sapling sprouts. (C) Lower left. Storm surge as well as wind played a role in mangrove destruction. (D) Lower right.
 Widespread snapping of tree trunks is evident.
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